Вы здесь

Теория ЕГЭ по физике 2019

Подготовка к ЕГЭ по физике 2019

 

Механика - один из самых значимых и наиболее широко представленных в заданиях ЕГЭ раздел физики. Подготовка по этому разделу занимает  значительную  часть времени подготовки к ЕГЭ по физике. Первый раздел механики - кинематика, второй - динамика. 

Кинематика

Равномерное движение:

v = const        Sx = vx t

x = x0 + Sx      x = x0 + vx t

Равноускоренное движение:

ax = (vx  - v0x)/t

vx = v0x + axt

Sx = v0xt + axt2/2           Sx =( vx2 - v0x2)/2ax

x = x0 + Sx                     x = x0 + v0xt + axt2/2

Свободное падение:

y = y0 + v0yt + gyt2/2           vy = v0y + gyt            S= v0yt + gyt2/2

Путь, пройденный телом, численно равен площади фигуры под графиком скорости.

Средняя скорость:

vср = S/t                     S = S1 + S2 +.....+ Sn                    t = t1 + t+ .... + tn

Закон сложения скоростей:

Вектор скорости тела относительно неподвижной системы отсчёта равен геометрической сумме скорости тела относительно подвижной системы отсчёта и скорости самой подвижной системы отсчёта относительно неподвижной.

Движение тела, брошенного под углом к горизонту     

Уравнения скорости:

vx = v0x = v0cosa

vy = v0y + gyt = v0sina - gt

Уравнения координат:

x = x0 + v0xt = x0 + v0cosa t

y = y0 + v0yt + gyt2/2 = y+ v0sina t + gyt2/2

Ускорение свободного падения:   gx = 0         g= - g

Движение по окружности

aц = v2/R = w2R        v = wR

Динамика

Первый закон Ньютона:

Существуют инерциальные системы отсчёта, относительно которых свободные тела сохраняют свою скорость.

Второй закон Ньютона:          F = ma

Третий закон Ньютона:   Сила действия равна силе противодействия: силы равны по модулю и противоположны по направлени.     F1 = F2

Сила тяжести        Fтяж = mg

Вес тела       P = N  ( N - сила реакции опоры)

Закон Всемирного тяготения         F = G m1 m2/R2

Fтяж = GMзm/Rз2 = mg            g = GMз/Rз2

По Второму закону Ньютона:  maц = GmMз/(Rз + h)2

 mv2/(Rз + h) = GmMз/(Rз + h)2

 v2 = GMз/(Rз + h)  - первая космическая скорость

 

Молекулярная физика и термодинамика

Количество вещества v = N/NA

Молярная масса   M = m0NA

Число молей     v = m/M

Число молекул     N = vNA = NAm/M

Основное уравнение МКТ    p = m0nvср2/3

Связь давления со средней кинетической энергией молекул  p = 2nEср/3

Температура - мера средней кинетической энергии молекул   Eср = 3kT/2

Зависимость давления газа от концентрации и температуры   p = nkT

Связь температур   T = t + 273

Уравнение состояния идеального газа      pV = mRT/M  -  уравнение Менделеева 

p1V1//T= p2V2/T2 = const   для постоянной массы газа  -   уравнение Клапейрона

Газовые законы

Закон Бойля-Мариотта:    pV = const       если  T = const   m = const

Закон Гей-Люссака:    V/T = const       если   p = const     m = const

Закон Шарля:     p/T = const       если     V = const      m = const

Относительная влажность воздуха 

   

Внутренняя энергия       U = 3mRT/2M

Изменение внутренней энергии ΔU = 3mRΔT/2M   

Об изменении внутренней энергии судим по изменению температуры!!!

Работа газа в термодинамике       A' = pΔV

Работа внешних сил над газом        A = - A'

Расчёт количества теплоты

Количество теплоты, необходимое для нагревания вещества (выделяющееся при его охлаждении)        Q = cm(t2 - t1)

с - удельная теплоёмкость вещества

Количество теплоты, необходимое для плавления кристаллического вещества при температуре плавления        Q = λm

λ - удельная теплота плавления

Количество теплоты необходимое для превращения жидкости в пар      Q = Lm

L - удельная теплота парообразования

Количество теплоты, выделяющееся при сгорании топлива      Q = qm

q - удельная теплота сгорания топлива

 

Перый закон термодинамики       ΔU = Q + A               

                                                           Q = ΔU + A'

Q - количество теплоты, полученное газом

Перый закон термодинамики для изопроцессов:

Изотермический процесс:  T = const

Q = A'

Изохорный процесс:   V = const

ΔU =Q

Изобарный процесс:    p = const

ΔU = Q + A

Адиабатный процесс:     Q =0      (в теплоизолированной системе)

ΔU = A

КПД тепловых двигателей

η = (Q- Q2) /Q1 = A'/Q1

Q1 - количество теплоты, полученное от нагревателя

Q2 - количество теплоты, отданное холодильнику

Максимальное значение КПД теплового двигателя (цикл Карно:)     η =(T1 - T2)/T1

T1 - температура нагревателя

T2 - температура холодильника

 

Электростатика

Закон сохранения электрического заряда

В замкнутой системе алгебраическая сумма электрических зарядов всех частиц сохраняется

Закон Кулона       F = kq1q2/R2   - сила взаимодействия двух точечных зарядов в вакууме

Одноимённые заряды отталкиваются, а разноимённые притягиваются

Напряжённость - силовая характеристика электрического поля точечного заряда

E = F/q

E = kq0/R2   - модуль напряжённости поля точечного заряда q0 в вакууме

Направление вектора Е совпадает с направлением силы, действующей на положительный заряд в данной точке поля

Принцип суперпозиций полей:   Напряжённость в данной точке поля равна векторной сумме напряжённостей полей, действующих в этой точке:           

Работа электрического поля при перемещении заряда  A = qE( d1 - d2) = - qE(d2 - d1)

A = - ( Wp2 - Wp1)

Wp = qEd   -  потенциальная энергия заряда в данной точке поля

Потенциал = Wp/q

Разность потенциалов - напряжение:     U = A/q

Связь напряжённости и разности потенциалов   E = U/d

Электроёмкость

C = q/U    

C = ee0S/d    -  электроёмкость плоского конденсатора

Энергия плоского конденсатора:  Wp = qU/2 = q2/2C = qU2/2

Законы постоянного тока

Определение силы тока:        I = Δq/Δt

Закон Ома для участка цепи:        I = U/R

Расчёт сопротивления проводника:       R = ρl/S

Законы полследовательного соединения проводников:

I = I1 = I2             U = U+ U2               R = R1 + R2

U1/U= R1/R2

Законы параллельного соединения проводников:

I = I1 + I2             U = U1 =  U2               1/R = 1/R1 +1/R2 + ...                        R = R1R2/(R+ R2)  -  для 2-х проводников

I1/I= R2/R1

Работа электрического поля      A = IUΔt     
Мощность электрического тока       P = A/Δt = IU I2R = U2/R     

Закон Джоуля-Ленца                   Q = I2RΔt       -           количество теплоты, выделяемое проводником с током

Закон Ома для полной цепи           

Электромагнетизм

Магнитное поле - особая форма материя, вознкающая вокруг движущихся зарядов и действующая на движущиеся заряды

Магнитная индукция - силовая характеристика магнитного поля

B = Fm/IΔl      

Fm = BIΔl

Сила Ампера - сила, действуюшая на проводник с током в магнитном поле

F= BIΔlsinα

Направление силы Ампера определяется по правилу левой руки: 

Если 4 пальца левой руки направить по направлению тока в проводнике так, чтобы линии магнитной индукции входили в ладонь, тогда большой палец, отогнутый на 90 градусов укажет направление действия силы Ампера

Сила Лоренца- сила, действующая на электрический заряд, движущийся в магнитном поле

Fл = qBvsinα

Направление силы Лоренца определяется по правилу левой руки:

Если 4 пальца левой руки направить по направлению движения положительного заряда ( против движения отрицательного), так, чтобы магнитные линии входили в ладонь, тогда отгнутый на 90 градусов большой палец укажет направление силы Лоренца

Магнитный поток     Ф = BScosα      [ Ф ] = 1 Вб

Закон электромагнитной индукции:

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через повернхность, ограниченную контуром   

ЭДС индукции в движушихся проводниках:

Индуктивность L = Ф/I            [ L ] = 1 Гн

Ф = LI

ЭДС самоиндукции:

Энергия магнитного поля тока :    Wm = LI2

Энергия электрического поля тока:     Wэл = qU/2 = CU2/2 = q2/2C

Электромагнитные колебания - гармонические колебания заряда и тока:

q = qm sinω0t   - колебания заряда на конденсаторе

i = q' = qmω0cosω0t   - колебания силы тока в катушке

Imax = qmω0    - амплитуда силы тока

Переменный электрический ток:

Ф = BScosω0

 

 

 

Подготовка к ЕГЭ по физике

Подготовка к ЕГЭ по физике требует умения решать задачи из различных разделов физики. На нашем сайте вы можете самостоятельно проверить свои знания и потренироваться в решении тестов ЕГЭ по физике по различным темам. В тесты включены задания базового и повышенного уровня сложности. Пройдя их, вы почувствуете необходимость более подробного повторения того или иного раздела физики и совершенствования навыков решения задач по отдельным темам для успешной сдачи ЕГЭ по физике. 

Одним из важнейших этапов подготовки к ЕГЭ по физике 2019 года является ознакомление с демонстрационным вариантом ЕГЭ по физике 2019. Такой вариант ежегодно публикуется к началу учебного года Федеральным институтом педагогических измерений (ФИПИ). Демонстрационный вариант разрабатан с учетом всех поправок и особенностей предстоящего экзамена по предмету в будущем году. Что же представляет собой демонстрационный вариант ЕГЭ по физике 2019 года? Демонстрационный вариант содержит типовые задания, которые по своей структуре, качеству, тематике, уровню сложности и объёму полностью соответствуют заданиям будущих реальных вариантов КИМ по физике 2019 года. Ознакомиться с демонстрационным вариантом ЕГЭ по физике 2019 можно на сайте ФИПИ: www.fipi.ru.

Целесообразно при участии в основном потоке сдачи ЕГЭ ознакомиться с экзаменационными материалами досрочного периода ЕГЭ  по физике, публикуемыми на сайте ФИПИ после проведения досрочного экзамена. 

Фундаментальные теоретические знания по физике крайне необходимы для успешной сдачи ЕГЭ по физике. Важно, чтобы эти знания были систематизированы. Достаточным и необходимым условием освоения теории является овладение материалом, изложенным в школьных учебниках по физике. Для этого требуются систематические занятия, направленные на изучение всех разделов курса физики. Особое внимание следует уделить решению расчётных и качественных задач, входящих в ЕГЭ по физике в части задач повышенной сложности.

Только глубокое, вдумчивое изучение материала с дальнейшим его усвоением, знание и интерпретация физических законов, процессов и явлений в совокупности с навыком решения задач обеспечат успешную сдачу ЕГЭ по физике.

Если вам нужна подготовка к ЕГЭ по физике, вам будет рада помочь репетитор по физике - Виктория Витальевна. 

Тесты для подготовки к ЕГЭ по механике представлены по разделам:

Тесты для подготовки к ЕГЭ по молекулярной физике и термодинамике:

Тесты для подготовки к ЕГЭ по электродинамике:

Тесты для подготовки к ЕГЭ по оптике:

Тесты для подготовки к ЕГЭ по квантовой физике:

Результаты теста, пройденного пользователями